Global
EN
可持续发展
可持续发展
持续创新、引领行业进步是我们不屈的使命。
新闻&资源
新闻&资源
时刻与您分享我们的一点一滴
关于我们
关于我们
音特电子集技术研发、芯片制造、封装测试、销售和服务于一体
人才发展
人才发展
一同释放潜力,塑造人类健康未来
新闻&资源
时刻与您分享我们的一点一滴
企业新闻 行业资讯 产品知识 资料下载
新闻&资源
时刻与您分享我们的一点一滴
PoC 电感器 3225 尺寸系列正式量产,赋能车载智能高速互联
2025-03-15
       公司电感器POC 3225 系列的研发及量产准备,该产品于 2025 年 2 月正式投放市场,专为高级驾驶辅助系统(ADAS)及车载摄像头网络设计,以 3.2mm×2.5mm 的紧凑尺寸实现业内领先的宽频带性能与高可靠性,助力汽车线束轻量化与高速数据传输   POC 3225 系列采用创新的双绕组结构设计,在 1MH
探索更多
PoC 电感器 3225 尺寸系列正式量产,赋能车载智能高速互联
2025-03-15
       公司电感器POC 3225 系列的研发及量产准备,该产品于 2025 年 2 月正式投放市场,专为高级驾驶辅助系统(ADAS)及车载摄像头网络设计,以 3.2mm×2.5mm 的紧凑尺寸实现业内领先的宽频带性能与高可靠性,助力汽车线束轻量化与高速数据传输   POC 3225 系列采用创新的双绕组结构设计,在 1MH
半导体所研制出一款超高集成度光学卷积处理器
2023-06-04
近日,据中国科学院半导体研究所消息,半导体所集成光电子学国家重点实验室微波光电子课题组李明研究员-祝宁华院士团队研制出一款超高集成度光学卷积处理器。相关研究成果以“Compact optical convolution processing unit based on multimode interference”为题发表在《自然通讯》(Nature Communications)杂志上。 卷积神经网络是一种受生物视觉神经系统启发而发展起来的人工神经网络,它由多层卷积层、池化层和全连接层组成。作为卷积神经网络的核心组成部分,卷积层通过对输入数据进行局部感知和权值共享,提取出不同层次和抽象程度的特征。在一个完整的卷积神经网络中,卷积运算的运算量通常占整个网络运算量的80%以上。虽然卷积神经网络在图像识别等领域取得了巨大的成功,但是它也面临着巨大的挑战。传统的卷积神经网络主要基于冯·诺依曼架构的电学硬件实现,存储单元和处理单元是分立的,这导致了数据交换速度和能耗之间的固有矛盾。随着数据量和网络复杂度的增加,电子计算方案越来越难以满足海量数据实时处理对高速、低能耗的计算硬件的需求。 光计算是一种利用光波作为载体进行信息处理的技术,它具有大带宽、低延时、低功耗等优点,提供了一种“传输即计算,结构即功能”的计算架构,有望避免冯·诺依曼计算范式中存在的数据潮汐传输问题。光计算在近年来受到了广泛关注,但大部分已报道的光计算方案中,光学元件的数量随着计算矩阵的规模呈二次增长趋势,这对光计算芯片规模扩展存在巨大挑战。
为什么部分ESD保护二极管采用 “双向击穿” 设计?
2025-11-15
USB 2.0/3.0、HDMI、DP、以太网(RJ45)、I2C/SPI 总线(双向通信),DC-DC 电源输入口、电池供电线路、5V/12V 设备电源接口
ESD保护二极管的结电容Cj由哪些部分组成?
2025-11-11
理论基础:结电容(Cj)包括耗尽层电容(Cd) 和扩散电容(Cs)
马斯克:Dojo2芯片量产与性能突破
2025-11-11
2025 年 11 月10日,马斯克旗下特斯拉在 AI 芯片领域的发展已进入密集迭代阶段,其自研芯片路线图和超算系统布局正重塑自动驾驶与机器人领域的技术格局。以下是基于最新动态的深度解析: 一、AI5 芯片:架构革新与量产倒计时 1. 技术突破与性能参数 特斯拉最新发布的 AI5 芯片已完成设计评审,这标志着该芯片从研发阶段正式进入生产准备阶段。根据马斯克披露的信息,AI5 在多个关键指标上
为何ESD保护二极管在反向偏置时漏电流IR?
2025-11-06
耗尽区的少子漂移电流-温度升高时显著增大 1.PN结表面的漏电流(受钝化层质量影响) 2.掺杂不均匀导致的局部电场集中电流 3.ESD管的IR通常设计为 < 1μA(25℃时),避免影响被保护电路的静态工作点
ESD Array 阵列响应速度?
2025-11-01
PESD5V0C1ULS-Q PESD5V0C2UM-Q PESD5V0F1BL-Q PESD5V0F1BLD-Q PESD5V0F1BRLD-Q PESD5V0H1BLG-Q PESD5V0H1BLL-Q PESD5V0L1BA-Q PESD5V0L1UA-Q
ESD保护二极管的PN结结构如何影响其泄放能力?
2025-10-24
ESD保护二极管的PN 结结构(如平面型、沟槽型)如何影响其ESD泄放能力? 1.平面型 PN 结: PN结位于芯片表面,结面积易做大,可承受更大的ESD脉冲电流(如:HBM 15kV),但寄生电容较大(因结面积大),且表面易受污染物影响导致击穿电压不稳定,适用于低频、大电流防护场景(如:电源VBUS) 1.1 平面型 PN 结是一种通过平面工艺(如光刻、扩散或离子注入)在半导体晶片表面形成
ESD保护二极管的雪崩击穿与齐纳击穿在物理机制上差异?
2025-10-14
首先简单理解的雪崩与齐纳击穿之间差异: 雪崩击穿:高反向电压使耗尽区中载流子获得足够能量,与晶格原子碰撞产生新的电子 - 空穴对(雪崩倍增),导致反向电流骤增;击穿电压随温度升高而升高(正温度系数),适用于高电压、大电流场景(如电源端防护) 齐纳击穿:低反向电压使耗尽区中强电场直接将束缚电子拉出共价键(场致发射),反向电流骤增;击穿电压随温度升高而降低(负温度系数)  
总计 291 12345678...3233