首页
EN
产品选型
EMS保护器件
TVS 瞬态抑制二极管
ESD 静电保护元件
PPTC 自恢复保险丝
TSS 半导体放电管
GDT 气体放电管
SBR 肖特基二极管
MOV 插件压敏电阻
NTC 浪涌热敏电阻
eFuse电子保险丝 *New*
EMI抑制器件
共模滤波电感
功率电感
磁珠
信号类共模滤波电感-CAN FD
Sensor传感器
温度传感器器件
温度传感器模阻
PowerDevices功率器件
MOSFET
RD 整流二极管
ZD 齐纳二极管
SPD防雷模组
电源防雷器 PSPD
信号防雷器 SSPD
监控防雷器 PSSPD
Signal 信号保护防雷模组
行业方案
工业
医疗
汽车
能源基础设施
消费类电子
电子雷管
客户案例
可持续发展
产业布局
专利资质
生产管理
产品规划
我们的未来
新闻&资源
企业新闻
行业资讯
产品知识
资料下载
关于我们
企业简介
文化理念
组织架构
发展历程
销售网络
荣誉资质
联系方式
技术支持
样品申请
技术支援
EMC测试
FAQ
交叉搜索
人才发展
职业发展
员工文化
福利待遇
招聘列表
Global
EN
首页
产品选型
EMS保护器件
EMI抑制器件
Sensor传感器
PowerDevices功率器件
SPD防雷模组
交叉搜索
TVS 瞬态抑制二极管
ESD 静电保护元件
PPTC 自恢复保险丝
TSS 半导体放电管
GDT 气体放电管
SBR 肖特基二极管
MOV 插件压敏电阻
NTC 浪涌热敏电阻
eFuse电子保险丝 *New*
共模滤波电感
功率电感
磁珠
信号类共模滤波电感-CAN FD
温度传感器器件
温度传感器模阻
MOSFET
RD 整流二极管
ZD 齐纳二极管
电源防雷器 PSPD
信号防雷器 SSPD
监控防雷器 PSSPD
Signal 信号保护防雷模组
行业方案
工业
医疗
汽车
能源基础设施
消费类电子
电子雷管
工业连接与通信
工业自动化与控制
工业运动与驱动
传感与人机交互
照明
工业PLC物联网关
电力载波
工业报到器人机界面 (HMI)
可编程控制器
工业控制器 I/O系统
运动控制系统变频器
运动控制器的伺服驱动器
工业报警器
传感器
智能灯
景观灯
糖尿病医疗保健
医院病人护理
体外诊断
血糖监测仪
牙科医疗设备
制氧机
血压监护仪
脉动式血氧计
耳鸣耳聋综合诊疗设备
医疗输液泵
医疗电动椅
电动床
CPAP呼吸机
心电图(ECG)
便携式血凝仪
半自动血栓弹力图仪
免疫测定分析仪
粪便分析仪
流式细胞仪
分子分析仪
ADAS
车身电子设备
汽车门禁及安全系统
热管理
汽车照明
车身域控制器
汽车娱乐系统
汽车电源
车内摄像头模块
后视镜更换/摄像头后视镜系统
前置摄像头
后门模块
雨刮器
脚踢模块
PEPS
热泵模块
车内照明灯
前照灯 自适应LED 驱动模块
前照灯 HB LB LED 驱动模块
小灯
尾灯
区域控制模块
域网关
汽车USB充电
高级音频
汽车显示屏
车载电池充电器
12V48V配电盒
48V新能源系统
储能系统
充电桩
智能电表
智能断路器
电网自动化
微型逆变器
不间断电源
电池管理系统BMS
直流充电桩
交流充电桩
燃气表
电表
水表
智能配电盘
固态断路器(SSCB)
工业断路器
GFCI/RCD断路器
DFCI断路器
AFCI断路器
故障指示器(FI)
电源品质测定器
电能质量分析仪
电网资产监测
高压直流输电
个人计算与娱乐
智能家居与物联网
个人出行与无人机
电源与充电
VR眼镜
台式电脑
智能锁
两轮车定位器
E-BIKE
无人机
PD
数码电子雷管
电子雷管
技术支持
技术支持
超过千家合作客户,17年服务经验,从选型到技术支持我们都能为您提供
样品申请
技术支援
EMC测试
FAQ
交叉搜索
可持续发展
可持续发展
持续创新、引领行业进步是我们不屈的使命。
产业布局
专利资质
生产管理
产品规划
我们的未来
新闻&资源
新闻&资源
时刻与您分享我们的一点一滴
企业新闻
行业资讯
产品知识
资料下载
关于我们
关于我们
音特电子集技术研发、芯片制造、封装测试、销售和服务于一体
企业简介
文化理念
组织架构
发展历程
销售网络
荣誉资质
客户案例
联系方式
人才发展
人才发展
一同释放潜力,塑造人类健康未来
职业发展
员工文化
福利待遇
招聘列表
选择型号搜索
|
交叉搜索
新闻&资源
时刻与您分享我们的一点一滴
企业新闻
行业资讯
产品知识
资料下载
新闻&资源
时刻与您分享我们的一点一滴
深化产学研融合:上海工程技术大学师生走进音特电子,共探材料科学新应用
2025-11-29
深化产教融合,打破高校理论教学与企业实际应用之间的围墙,让未来的工程师们零距离接触电子元器件行业的前沿技术
探索更多
NTC Sensor热敏电阻温度采集原理
2023-06-13
NTC Sensor热敏电阻温度采集原理
ZnO压敏电阻在无刷电机的保护电路?
2023-06-13
ZnO(氧化锌)压敏电阻是一种可调节电阻值的无极性电阻,具有瞬间响应能力,当电压或电流超过一定程度时,电阻值会迅速变小,吸收过电压和过电流,防止无刷电机或其相关器件受到损坏。ZnO压敏电阻在无刷电机的保护电路中可以用来抑制电机输出端瞬态过电压、过电流等瞬态干扰,起到保护无刷电机及其相关器件的作用。在无刷电机的保护电路中,ZnO压敏电阻通常安装在电机输入端或输出端,与TVS瞬态抑制二极管等保护元件配合使用,用来共同抑制过电压和过电流的瞬态冲击。此外,为了提高ZnO压敏电阻的效果,还应注意以下事项:1. 选择合适的压阻值:根据无刷电机的工作电压和电流,选择合适的ZnO压敏电阻的压阻值。2. 确保功率足够:在无刷电机的保护电路中,ZnO压敏电阻的功率应足够大,以防止器件烧毁或过载。3. 优化电路布局:在电路设计过程中,要优化电路布局,减少电磁干扰。4. 注意静电保护:作为保护元件的一种,ZnO压敏电阻也需要进行静电保护,避免外界静电干扰导致器件损坏。总之,在无刷电机的保护电路中,ZnO压敏电阻具有重要的应用价值,对保护无刷电机及其相关器件起到了关键的作用。
TVS瞬态抑制二极管在无刷电机的保护电路?
2023-06-13
无刷电机通常采用三相桥式电路驱动,其正常工作电压和电流会因多种因素如负载变化、磁场干扰等产生瞬态峰值过高的电压和电流。这些瞬态冲击可能导致器件受损,如MOSFET、IGBT等开关管或甚至控制器和微控制器等。为了保护无刷电机的相关器件,可采用TVS(Transient Voltage Suppressor)瞬态抑制二极管进行保护。TVS瞬态抑制二极管采用半导体材料,通过Zener二极管的反向击穿来实现瞬态抑制的功能,能够在极短的时间内吸收过电压和过流的瞬态冲击,有效保护无刷电机及其相关器件。在无刷电机的保护电路中,TVS瞬态抑制二极管通常安装在电机输入端或输出端,用来抑制瞬态峰值电压和电流。同时,在安装TVS瞬态抑制二极管时要注意以下事项:1. 选择合适的电压等级:TVS瞬态抑制二极管的电压等级要比无刷电机的最高工作电压大一些。2. 确定电路拓扑结构:根据无刷电机的实际情况,确定TVS瞬态抑制二极管的放置位置。3. 加强PCB的布局设计:在电路设计过程中,要避免电路的高噪声区域和低噪声区域交错排布,从而减少电磁干扰。4. 注意防护接地:TVS瞬态抑制二极管安装在电机输入输出端时需要注意防止外界静电干扰,并加强防护接地。以上是在无刷电机的保护电路中使用TVS瞬态抑制二极管的一些注意事项,合理的保护电路设计能延长无刷电机的使用寿命,并提高整个系统的稳定性和安全性。
汽车车灯SMBJ30CA二极管的使用注意事项?
2023-06-13
1. 保持干燥:汽车车灯SMBJ30CA二极管在使用中应保持干燥,避免受潮、沾水等。2. 避免过热:在长时间使用时,SMBJ30CA二极管可能会发热,需要注意避免过热影响正常使用。3. 防止静电:SMBJ30CA二极管在使用和存放过程中应注意防止静电的影响,以免对器件造成损害。4. 充分预热:在使用SMBJ30CA二极管前,应进行充分预热,以免温度突变对器件造成损害。5. 正确安装:SMBJ30CA二极管应正确安装在汽车车灯电路中,避免接触不良、接反等现象。6. 不可逆接:SMBJ30CA二极管具有极性,在使用中应注意不要逆接,以免对器件造成损害。7. 注意放置位置:SMBJ30CA二极管在放置和使用时应注意放置位置,避免受到机械冲击或挤压等影响,以免对器件造成损害。
SM8S33CA汽车级二极管的使用方法?
2023-06-13
SM8S33CA是一款汽车级别的二极管,其主要用于电子设备和汽车电子系统的过电压保护。以下是SM8S33CA的使用方法:1. SM8S33CA的正负极需正确连接,确保极性正确。2. 在使用SM8S33CA二极管时需要做好散热工作,确保二极管温度不会过高。3. 确保SM8S33CA二极管正常工作时,其工作电压不应超过33V,电流不能超过8A。4. 在使用SM8S33CA二极管时,应避免有过度电流过载的情况。5. 在安装SM8S33CA二极管时,应将其焊接在适当的位置,并确保焊接牢固可靠。6. SM8S33CA二极管应存放在防潮,防尘,避光和防静电的环境中,以防止其受到损坏。7. 在使用SM8S33CA二极管时,应遵守相关的安全操作规程,确保设备和人员的安全。
MOS管工作原理?主要参数有哪些?详解
2023-06-13
MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor)是一种半导体器件,它是由金属、氧化物和半导体晶体构成的结构。工作原理:当MOS管的栅极施加一定电压后,形成一个电场,使得半导体的导电性发生变化,导致源极和漏极之间的电阻变化,从而实现电流的调制和控制。主要参数:1. 静态工作点:源漏电流、栅极电压;2. 动态参数:最大漏极电流、最大漏极电压、最大功耗、开关时间和占空比等。详解:静态工作点是指MOS管在一个特定的电压下,源极和漏极之间电流为零的时候的工作点。一般情况下,厂家规定的静态工作点是最合适的工作点,如果偏离静态工作点,就会影响MOS管的工作性能。动态参数是指MOS管在动态工作状态下的特性。最大漏极电流是MOS管能承受的最大电流,如果超过这个值,就会导致MOS管的损坏。最大漏极电压是MOS管能承受的最大电压,如果超过这个值,就会导致MOS管的击穿。最大功耗是MOS管可以承受的最大功率,超过这个值会导致MOS管的发热,甚至损坏。开关时间是指MOS管从关闭到打开所需的时间,占空比是指MOS管关闭时间和总时间的比率,在某些应用中需要特别注意。总之,MOS管是一款常用的半导体器件,它的主要参数包括静态工作点和动态参数,需要根据具体的应用场景选择合适的MOS管型号和参数。
MOS管充放电保护电路?
2023-06-13
MOS管充放电保护电路是用于保护MOS管的充放电过程的电路。在MOS管的充放电过程中,由于存在反向电压或电流的可能性,可能会导致MOS管损坏或失效。为了避免这种情况的发生,需要使用充放电保护电路。充放电保护电路可以分为两种类型:单向保护电路和双向保护电路。单向保护电路主要针对MOS管在充电过程中产生的反向电压或电流,通过添加二极管等元器件来避免这些反向电压或电流对MOS管造成的损害。而双向保护电路则可以在MOS管充电和放电的过程中都进行保护,通常采用MOS管和二极管组合实现。无论采用何种保护方法,必须注意保持保护电路电阻的合适,以避免过量电MOS管充放电保护电路是用于保护MOS管的充放电过程的电路。在MOS管的充放电过程中,由于存在反向电压或电流的可能性,可能会导致MOS管损坏或失效。为了避免这种情况的发生,需要使用充放电保护电路。充放电保护电路可以分为两种类型:单向保护电路和双向保护电路。单向保护电路主要针对MOS管在充电过程中产生的反向电压或电流,通过添加二极管等元器件来避免这些反向电压或电流对MOS管造成的损害。而双向保护电路则可以在MOS管充电和放电的过程中都进行保护,通常采用MOS管和二极管组合实现。无论采用何种保护方法,必须注意保持保护电路电阻的合适,以避免过量电流流过保护电路,从而导致保护电路本身产生过热和损坏。流流过保护电路,从而导致保护电路本身产生过热和损坏。
SPD防雷器主要参数有哪些?使用注意事项?
2023-06-13
SPD防雷器(Surge Protective Device)的主要参数包括:1. 额定电压(Rated voltage):SPD防雷器可承受的最大电压,通常以伏特表述。2. 额定电流(Rated current):SPD防雷器的最大额定电流,单位通常是安培。3. 放电电流(Discharge current):SPD防雷器在受到过电压冲击时,能够将电能迅速导到地面的最大电流。4. 品质分级(Quality level):SPD防雷器的可靠程度,通常以IEC标准中的品质分级来表示,分为I级到IV级。使用注意事项:1. SPD防雷器设备应由专业工程师安装并调试,确保其正确、可靠地工作。2. SPD防雷器需要定期检测和替换,在使用过程中应遵守相关的安全保护规定。3. 使用者应根据电气设备的实际情况选择合适的SPD防雷器,以确保其最佳保护效果。4. 与SPD防雷器配合使用的其他电气设备也应符合相关标准和要求,以确保系统的整体安全性。
PPTC自恢复保护丝的主要参数有哪些?使用注意事项?
2023-06-13
主要参数:1. 额定电流:pptc自恢复保险丝的最大电流,超过该电流值时,会发生自恢复保护。2. 触发电流:pptc自恢复保险丝发生自恢复保护的最小电流值。3. 额定电压:pptc自恢复保险丝的最大工作电压。4. 最大电压:pptc自恢复保险丝可以承受的最大电压,超过该电压值可能导致保险丝失效。使用注意事项:1. pptc自恢复保险丝应选择符合实际应用的额定电流、额定电压和触发电流。2. 在电路中应该避免过大电流的流动,以免pptc自恢复保险丝失效。3. 在使用pptc自恢复保险丝时,应保证其正常工作状态,比如防止温度过高、环境潮湿等。4. 使用pptc自恢复保险丝时应注意安装密封性,以保证其被避免受到水汽等外界因素的干扰。5. 当pptc自恢复保险丝发生自恢复保护后,需要及时检查电路,确定故障原因,并进行处理。
总计 312
1
2
...
19
20
21
22
23
24
25
...
34
35